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Abstract

This paper considers a subsurface crack in a functionally graded coating layer on the layered half-space subjected to

an anti-plane impact load. The over-coated layer is assumed as a functionally graded material. The second kind

Fredholm integral equation is obtained using Laplace transform and Fourier transform. The dynamic stress intensity

factors can be obtained through the use of numerical inversion of Laplace transform technique. Numerical results are

given for different values of the non-homogeneous parameter, geometric constants and material properties. � 2002

Elsevier Science Ltd. All rights reserved.
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1. Introduction

In recent years, the mechanical and thermal barrier over-coatings have been used to protect the substrate
metallic part. The concept of the functionally graded materials (FGMs) has been introduced and applied to
the development of aerospace structures, aircraft engines, gas turbines and military armors etc. Erdogan
(1995) discussed the problem of crack growth in FGM due to fatigue, creep and stress corrosion cracking,
and fracture instability.

For the non-homogeneous interfacial problems, Erdogan (1985) examined the singular behavior of the
crack-tip stress field for a crack perpendicular to and intersecting the interface of two bonded non-
homogeneous half-spaces under anti-plane shear loading. Delale and Erdogan (1988) solved some crack
problems for a non-homogeneous interfacial layer between two dissimilar half-planes subjected to a static
loading. Itou and Shima (1999) presented solutions of the axisymmetric problem for a cylindrical crack in a
non-homogeneous interfacial zone between a circular elastic cylinder and an infinite elastic medium under
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mode I loading. Yang and Shih (1994) studied the non-homogeneous interlayer with a semi-infinite crack
between two dissimilar orthotropic half-spaces. Noda and Jin (1993) studied the crack problems in non-
homogeneous materials under thermal loading. Choi (1996) obtained SIFs by Cauchy-type singular integral
equation method for a layered medium containing a crack perpendicular to the functionally graded non-
homogeneous interlayer. Gu et al. (1999) presented the SIFs for the non-homogeneous material using a
finite element method by the domain integral methodology. Shbeeb and Binienda (1999) solved the in-
terface crack problem for the sandwiched FGM strip between two homogeneous dissimilar layers.

For elastodynamic response of a composite materials, Li and Tai (1991) solved the problem for a center
interface crack of two isotropic dissimilar strips between isotropic dissimilar half-spaces under an anti-
plane shear impact load. Sih and Chen (1981) presented some solutions for dynamic crack problems of a
composite materials. For a dynamic crack problem, almost authors assumed that the interfacial layer
is homogeneous layer with constant material properties. But, Babaei and Lukasiewicz (1998) assumed
that the interfacial layer is a FGM layer with properties exponentially varied and they obtained the dy-
namic SIF (DSIF) for a crack in a FGM layer between isotropic half-spaces under an anti-plane shear
impact load.

Lee and Erdogan (1995) showed the solutions of the thermal SIF for the interface crack between the
FGM over-coating and the substrate under a steady-state heat flow. Cai and Bao (1998) analyzed, using a
finite element method, the crack bridging in the FGM coating which is a ceramic/metal composite with its
gradation characterized by local volume fractions of metal and ceramic phases. Jin and Batra (1996) solved
the interface crack problems of four coating models such as single layered homogeneous coating, double
layered piece-wise homogeneous coating, single layered FGM coating and double layered over-coating with
FGM bottom coat, under an anti-plane shear loading. However, these previous solutions for layered over-
coating crack models consider only the static loading cases.

In this paper, we will consider a subsurface crack in a non-homogeneous over-coating on the layered
half-space subjected to an anti-plane impact load. The over-coated layer is assumed FGM. Solutions are
expressed in terms of the Fredholm integral equation using Laplace transform and Fourier transform.
DSIF can be obtained by numerical inversion of Laplace transform technique of Miller and Guy (1966).
Numerical results are given for different values of the non-homogeneous parameter, geometric constants
and material properties.

2. Governing equation

A subsurface crack in the over-coated FGM layer on the layered half-space as shown in Fig. 1. The crack
length is 2a, and the over-coated layer height is H1. For the formulation, we consider the over-coated layer
as two bonded layers with an interface crack, namely layers 1 and 2. The variation of the shear modulus, l,
and the density, q, in the over-coated layer are assumed by:

l1 ¼ l0 exp½bðh1 þ yÞ�;
l2 ¼ l0 exp½bðh1 þ yÞ�;
q1 ¼ q0 exp½bðh1 þ yÞ�;
q2 ¼ q0 exp½bðh1 þ yÞ�;

ð1Þ

where l0 and q0 are constants and b is a non-homogeneous parameter expressed in the form,

b ¼ 1

h1 þ h2
ln

l3

l0

� �
: ð2Þ
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Under the anti-plane shear impact load, the displacement should be in the form,

uðiÞx ¼ uðiÞy ¼ 0; uðiÞz ¼ wiðx; y; tÞ: ð3Þ

The equation of motion can be expressed in the form,

r2wi þ bi
owi

oy
¼ 1

C2
2i

o2wi

ot2
; ð4Þ

where

C2i ¼ C0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
l0=q0

p
; bi ¼ b ði ¼ 1; 2Þ;

C2i ¼
ffiffiffiffiffiffiffiffiffiffi
li=qi

p
; bi ¼ 0 ði ¼ 3; 4Þ

ð5Þ

and C2i is a shear wave velocity in the ith layer.
We consider the following boundary conditions,

sð1Þyz ðx; 0; tÞ ¼ sð2Þyz ðx; 0; tÞ ¼ �s0HðtÞ; jxj6 a; ð6Þ

w1ðx; 0; tÞ � w2ðx; 0; tÞ ¼ 0;
sð1Þyz ðx; 0; tÞ � sð2Þyz ðx; 0; tÞ ¼ 0;

jxjP a; ð7Þ

where s0 is constant and HðtÞ denotes the Heaviside unit step function. The material interfaces are assumed
to be perfectly bonded. The shear stress and displacement should be continuous across the interfaces in the
forms

sðiÞyz ðx; hi; tÞ ¼ sðiþ1Þ
yz ðx; hi; tÞ ði ¼ 2; 3Þ; ð8Þ

wiðx; hi; tÞ ¼ wiþ1ðx; hi; tÞ ði ¼ 2; 3Þ: ð9Þ
The upper surface (y ¼ �h1) is traction free,

sð1Þyz ðx;�h1; tÞ ¼ 0: ð10Þ

Fig. 1. Crack model of the layered half-space with the over-coated non-homogeneous layer.

C.W. Shul, K.Y. Lee / International Journal of Solids and Structures 39 (2002) 2019–2029 2021



3. Analysis

Define a Laplace transform pair in the forms,

U
ðpÞ ¼
Z 1

0

UðtÞ expð�ptÞdt; ð11Þ

UðtÞ ¼ 1

2pi

Z
Br

U
ðpÞ expðptÞdp; ð12Þ

where the integral in Eq. (12) is taken over the Bromwich path. The Laplace transform Eq. (4) yields:

r2w

i þ bi

ow

i

oy
¼ p2

C2
2i

w

i : ð13Þ

The deflection w

i ðx; y; pÞ in Laplace transform domain depends only on the space variables x and y. If the

Fourier cosine transform is employed on the variable x, Eq. (13) reduces to an ordinary differential
equation, with solutions of the followings,

w

i ðx; y; pÞ ¼

2

p

Z 1

0

fAðiÞðs; pÞeðX1iyÞ þ BðiÞðs; pÞeðX2iyÞg cosðsxÞds ði ¼ 1; 2Þ; ð14aÞ

w

3ðx; y; pÞ ¼

2

p

Z 1

0

fAð3Þðs; pÞeð�c3yÞ þ Bð3Þðs; pÞeðc3yÞg cosðsxÞds; ð14bÞ

w

4ðx; y; pÞ ¼

2

p

Z 1

0

Að4Þðs; pÞeð�c4yÞ cosðsxÞds; ð14cÞ

where

X1i ¼ � bi

2

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bi

2

� �2

þ s2 þ p
C0

� �2
s

;

X2i ¼ � bi

2

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bi

2

� �2

þ s2 þ p
C0

� �2
s

;

ð15Þ

cj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ p

C2j

� �2
s

ðj ¼ 3; 4Þ: ð16aÞ

The corresponding anti-plane shear stress distributions in Laplace transform become in the forms,

s
ðiÞyz ðx; y; pÞ ¼ 2

p

Z 1

0

li X1iAðiÞðs; pÞeðX1iyÞ
�

þ X2iBðiÞðs; pÞeðX2iyÞ
�
cosðsxÞds ði ¼ 1; 2Þ; ð16bÞ

s
ð3Þyz ðx; y; pÞ ¼ � 2

p

Z 1

0

l3c3 Að3Þðs; pÞeð�c3yÞ
�

� Bð3Þðs; pÞeðc3yÞ
�
cosðsxÞds; ð16cÞ

s
ð4Þyz ðx; y; pÞ ¼ � 2

p

Z 1

0

l4c4A
ð4Þðs; pÞeð�c4yÞ cosðsxÞds: ð16dÞ

Boundary conditions, Eqs. (6)–(10), become the following forms in the Laplace transform domain,
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s
ð1Þyz ðx; 0; pÞ ¼ s
ð2Þyz ðx; 0; pÞ ¼ � s0
p
; jxj6 a; ð17Þ

w

1ðx; 0; pÞ � w


2ðx; 0; pÞ ¼ 0;
s
ð1Þyz ðx; 0; pÞ � s
ð2Þyz ðx; 0; pÞ ¼ 0;

jxjP a; ð18Þ

s
ðiÞyz ðx; hi; pÞ ¼ s
ðiþ1Þ
yz ðx; hi; pÞ ði ¼ 2; 3Þ; ð19Þ

w

i ðx; hi; pÞ ¼ w


iþ1ðx; hi; pÞ ði ¼ 2; 3Þ; ð20Þ

s
ð1Þyz ðx;�h1; pÞ ¼ 0: ð21Þ

From Eqs. (14a) to (18), we obtain a pair of dual integral equations in the forms,Z 1

0

Aðs; pÞ cosðsxÞds ¼ 0; jxjP a; ð22Þ

Z 1

0

sf3ðs; pÞAðs; pÞ cosðsxÞds ¼ � ps0
pl0 expðbh1Þ

; jxj < a; ð23Þ

where

f3ðs; pÞ �
2

s
X12

Að2Þðs; pÞ
Aðs; pÞ

�
þ X22

Bð2Þðs; pÞ
Aðs; pÞ

�
; ð24Þ

Fig. 2. The normalized SIFs vs. the crack length for various crack eccentricities in case of two layers.
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Að2Þðs; pÞ and Bð2Þðs; pÞ are given by the matrix equation in the form,

Að2Þðs; pÞ
Bð2Þðs; pÞ
Að3Þðs; pÞ
Bð3Þðs; pÞ
Að4Þðs; pÞ

0
BBBB@

1
CCCCA ¼ Aðs; pÞ M½ ��1

expð�X21h1Þ � expð�X11h1Þ
0
0
0
0

0
BBBB@

1
CCCCA; ð25Þ

M matrix is shown in Appendix.
The unknown function Aðs; pÞ can be defined by Copson’s method (Copson, 1961):

Aðs; pÞ ¼ � p2a2s0
2l0p expðbh1Þ

Z 1

0

ffiffiffi
n

p
W
ðn; pÞJ0ðsanÞdn; ð26Þ

where Aðs; pÞ satisfies Eqs. (22)–(24). We obtained the following second kind Fredholm integral equation,

W
ðn; pÞ þ
Z 1

0

W
ðg; pÞKðn; g; pÞdg ¼
ffiffiffi
n

p
; ð27Þ

where

Kðn; g; pÞ ¼
ffiffiffiffiffi
ng

p Z 1

0

a f3
a
a
; p

� �h
� 1

i
J0ðagÞJ0ðanÞda; ð28Þ

J0( ) is the zero order Bessel function of the first kind. Since the function Aðs; pÞ is known Eqs. (26)–(28), the
entire stress field can be obtained.

Fig. 3. The normalized DSIFs vs. time for various crack eccentricities in the case of two layers.
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In the anti-plane shear impact load case, DSIF, k3ðtÞ, near the crack tip is presented in the form,

k3ðtÞ ¼
s0

ffiffiffi
a

p

2pi

Z
Br

W
ð1; pÞ
p

ept dp: ð29Þ

4. Numerical results and discussion

The Fredholm integral equation in Laplace transform domain is solved numerically using Gauss La-
gueere and Gauss Legendre technique. The inversion of Laplace transform is accomplished by the nu-
merical procedure developed by Miller and Guy (1966). The solutions at large T 
ð¼C0t=aÞ converge to the
static solutions. The static SIF, K3, is obtained by applying Tauberian’s final value theorem (Sneddon,
1972) in the form,

lim
T 
!1

k3ðT 
Þ ’ K3 ¼ Wsð1Þs0
ffiffiffi
a

p
; ð30Þ

where

WsðnÞ ¼ lim
p!0

W
ðn; pÞ: ð31Þ

4.1. Case 1: Two layer case of l3 ¼ l4 and q3 ¼ q4

Fig. 2 shows k3=s0
ffiffiffi
a

p
vs. a=H1 for various crack eccentricity (e=H1 � 1=2� h1=H1) in cases of the ho-

mogeneous over-coating and the FGM over-coating. The SIFs give the unit value approximately at very

Fig. 4. The normalized DSIFs vs. time for various shear moduli in case of two layers.
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small crack lengths (a=H1 � 1). For the interface crack, e=H1 ¼ �1=2, our results are in good agreement
with those of Jin and Batra (1996).

Fig. 3 displays k3ðtÞ=s0
ffiffiffi
a

p
vs. C0t=a in the FGM over-coating model in cases of various shear moduli

and crack eccentricities. The DSIFs decrease with the decrease of the eccentricity, because of the varia-
tion of the shear modulus with crack location. When l3=l0 < 1, the larger l3=l0 values give the larger
DSIFs.

Fig. 4 shows the DSIFs vs. the normalized time in the cases of the homogeneous over-coating and the
FGM over-coating, respectively, and the ratios of shear modulus, l3=l0 ¼ 0:05, 0.1, 0.5, respectively, for the
cases of e=H1 ¼ 0:0 and a=H1 ¼ 1:0. The peak values of the normalized DSIFs for the homogeneous over-
coating and larger than those for the FGM over-coating. The phenomenon is natural because the wave
velocity in the homogeneous coating layer is higher than in the FGM layer as the shear modulus in the
homogeneous coating layer is larger than in the FGM coating layer. The dynamic inertia effects for the FGM
coating models decrease with the decrease of the ratio of shear modulus, in case of l3=l0 < 1, but the trend
for the homogeneous coating is opposite. For the homogeneous coating model, it is noted that small os-
cillations of the DSIF curves for the lower C0t=a values are observed and those small peaks are generated by
the arrival of reflected waves from the free surface boundaries to the crack tip region (Chen and Sih, 1977).

4.2. Case 2: Three layer case of q3 ¼ q4

Fig. 5 displays k3=s0
ffiffiffi
a

p
, vs. H2=H1, in cases of various crack eccentricities and shear moduli. The values

of the SIFs increase with the increase of H2=H1, and then converge to constant values. Fig. 6 shows k3=s0
ffiffiffi
a

p

vs. a=H1. with various crack eccentricities. For an interface crack, e=H1 ¼ �1=2, our results of H2=H1 ¼
100:0 are in agreement with those of Jin and Batra (1996) in case of H2=H1 ! 1.

Fig. 5. The normalized SIFs vs. internal layer thickness ratio in case of three layers.
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Fig. 6. The normalized SIFs vs. crack length in case of three layers.

Fig. 7. The normalized DSIFs vs. the internal layer thickness ratio in case of three layers.
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Fig. 7 displays k3ðtÞ=s0
ffiffiffi
a

p
vs. C0t=a in cases of H2=H1 ¼ 0:5, 1.0 and 1. The peak values of DSIFs

increase with the increase of H2=H1 in case of l3=l0 ¼ 0:5. But they do not show the difference in case of
l3=l0 ¼ 0:1.

Fig. 8 shows k3ðtÞ=s0
ffiffiffi
a

p
vs. C0t=a for various crack eccentricities. The trend is same an in case of two

layers.

5. Conclusion

The elastodynamic problem of a subsurface crack in the over-coated non-homogeneous layer on the
layered isotropic half-space under an anti-plane impact load is analyzed by integral transform technique.
Fredholm integral equation is solved numerically, and the inversion of Laplace transform is accomplished
by the method of Miller and Guy. The results are expressed in terms of the DSIFs. For the interface crack,
our static results are in good agreement with the previous solutions. The values of DSIFs decrease with the
decrease of the crack eccentricity. The dynamic inertia effects for the homogeneous over-coating are more
affected than for the FGM over-coating. The DSIFs increase with the increase of the internal layer
thickness. The effect of the layer thickness ratio on DSIFs decrease with the decrease of shear modulus ratio
of the internal isotropic layer to the top surface of FGM.

Appendix A

½M � ¼
Mað1Þ 0 0
Mbð2Þ Mcð2Þ 0
0 Mdð3Þ Moð3Þ

2
4

3
5; ðA:1Þ

Fig. 8. The normalized DSIFs vs. the crack eccentricity in the case of three layers.
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where

Ma ¼ 1

��
� X11

X21

�
expð � X11h1Þ;

X21

X11

�
� 1

�
expð � X21h1Þ

�
; ðA:2Þ

Mbð2Þ ¼
expðX12h2Þ expðX22h2Þ

X12 exp½bðh1 þ h2Þ þ X12h2� X22 exp½bðh1 þ h2Þ þ X22h2�

� �
; ðA:3Þ

Mcð2Þ ¼
� expð�c3h2Þ � expðc3h2Þ

l3
l0

c3 expð�c3h2Þ � l3
l0

c3 expðc3h2Þ

� �
; ðA:4Þ

Mdð3Þ ¼
expð�c3h3Þ expðc3h3Þ

�c3 expð�c3h3Þ c3 expðc3h3Þ

� �
; ðA:5Þ

Moð3Þ ¼
� expð�c4h3Þ

l3
l0

c4 expð�c4h3Þ

� �
: ðA:6Þ
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